→ +1(302)252-1320 → thankid@udel.edu m/dhruvthanki ♀ dhruvthanki.github.io ♀/dhruvthanki

EDUCATION

University of Delaware

Thesis Track, Master of Science in Robotics

LDRP Institute of Technology and Research

Bachelor of Engineering in Mechanical Engineering

EXPERIENCE

Robotic Locomotion Lab, University of Delaware

Graduate Student Researcher | Advised by: <u>Dr.Ioannis Poulakakis</u>

- Developing Safe and Multi-Threaded Real-Time software for the hardware implementation of Whole-Body Controllers.
 Devised a Task-Space QP Controller in C++ that runs at approximately 2kHz for tracking different kinds of objectives like joint-space trajectories, Center of Mass trajectory, Swing-foot trajectory, attitude control of torso and swing-foot, and minimization of Centroidal Momentum.
- Generated dynamic walking primitives for humanoids, specifically for Digit robot using **TROPIC** for its **Direct Collocation** based trajectory optimization, which was modified to handle kinematic closed-loops and planar contact.
- Generated symbolic matrices for the Kinematics and Dynamics of the Digit humanoid robot using CasADi.

AWL: DRDO Robotics And Unmanned Systems Exposition (DRUSE) Team Member

- Ahmedabad, Gujarat, India • Designed the flight module where the BLDC motors are mounted on links that are actuated using a gear train. These links open and move out of the robot as the upper hemisphere is raised using a rack and pinion mechanism. Oralified amongstation 20, and all 200 and the train the Clark and pinion mechanism.
- Qualified amongst the top 30 out of 200 robotics teams in the Challenge in the West–India zone. [Patent Filed]

Space Application Center - Indian Space Research Organization (ISRO)

 $Robotics \ Intern \mid Advised \ by: \ Neeraj \ Mathur \ and \ Anurag \ Verma$

• Computed a closed-form solution to the inverse kinematics for a 6-DOF Walk-and-Roll rover leg. (Department: MESA, Group: OPMG, Division: OMDD).

PUBLICATIONS

• K. S. Narkhede, A. M. Kulkarni, D. A. Thanki, and I. Poulakakis, A Sequential MPC Approach to Reactive Planning for Bipedal Robots Using Safe Corridors in Highly Cluttered Environments. IEEE-RAL, 2022

PROJECTS

Global Trajectory Tracking for a Humanoid Robot | Hierarchical Control, Reactive Footstep Planning

- Formulated an N-MPC problem for footstep generation utilizing the Linear Inverted Pendulum model as a close approximation of the Step-2-step dynamics of the actual robot.
- Formulated Whole-Body QP for tracking interpolated trajectories of Center of Mass and Swing-Foot.
- Implemented reactive footstep planning in the presence of Dynamic Obstacles using Control Barrier Functions.

Object Classification and Semantic Segmentation | Deep Learning, Computer Vision

- Designed a Convolutional Neural Network to carry out object classification using the CIFAR100 data set.
- Implemented **resnet50** in Pytorch, which was used to create feature maps for each object. Finally, a segmented image identifying each object with a different color was displayed on top of the original image.

Dynamic Walking and Turning for a 3D-Biped | Hybrid-Zero Dynamics, Poincare Maps, Controlled Symmetries

- Implemented the method of virtual constraints and optimized the trajectory for the actuated DOF to obtain a limit cycle corresponding to a stable walking gait for a planar 5-link bipedal robot with an under-actuated stance foot.
- Simulated the robot with feedback linearization-based tracking controller for the optimized trajectories. Carried out Poincare analysis to validate the stability of the Zero Dynamics.

• Generated **turning primitives** with the desired heading angle for a simple 3D biped with an under-actuated foot.

Trajectory Planning and Inverse Kinematics | Jacobian Pseudo-Inverse Based Inverse Kinematics

- Implemented the **Jacobian Pseudo-Inverse** method for inverse kinematics to carry out trajectory planning while satisfying constraints for obstacle avoidance and joint torque limits.
- Verified the algorithm on a LBR iiwa 7 R800 robot arm model in the CoppeliaSim simulator.

TECHNICAL SKILLS

- Languages: C++/C, MATLAB, Python
- Libraries/Frameworks: MuJoCo, Eigen, CMake, Git, Drake, Docker, Pytorch, OpenCV, Testing

Jan. 2020 – Present

Jun. 2019 - Aug. 2019

Jan. 2019 - Jun. 2019

Ahmedabad, Gujarat, India

Newark, Delaware

Present Newark, Delaware

May 2019 Gandhinagar, Gujarat, India